Schlagwort-Archive: NWT4000

Tiefpass 5. Ordnung für 190 MHz simuliert und aufgebaut

Ich habe eine Chebychev Tiefpaß 5. Ordnung entworfen mit diskreten L / C Elementen.
Chebychev Filter haben die größte Flankensteilheit.
Bei Kapazitäten habe ich hier eine größere Auswahl, deshalb wurde die 3 C und 2 L Struktur gewählt und simuliert.

Das Ergebnis der Simulation im Ansoft Designer.

Die 9,4pF wurden mit 8pF und 1,5pF aufgebaut und die 30pF mit 2 x 15pF.
Hier der fertige Aufbau im Gehäuse. Weiterlesen

Ein HF Verstärker von 100MHz bis 4400MHz aufgebaut

Ich habe einen breitbandigen HF Verstärker aufgebaut für den Frequenzbereich von 100 MHz bis 4,4 GHz.

Dazu habe ich ein ERA1-SM MMIC verwendet, wie in diesem Artikel.
Im HF 50Ohm Eingang und im Ausgang sind jeweils 10nF Kondensatoren in die Microstrip Leitung eingesetzt um die Gleichspannung nach außen abzublocken.

Auf der Rückseite ist ein Spannungsregler 7808 für 8V aufgelötet. Die zwei 100nF Kondensatoren für die Glättung und zum Verhindern von Schwingungen sind direkt an die Beine gelötet. Hier der Aufbau:

Die ERA1 MMIC Schaltung benötigt ca. 42mA über einen Vorwiderstand von 113 Ohm lt. Datenblatt bei 8V Spannung. Weiterlesen

Das Stehwellenverhältnis SWV mit dem NWT4000 messen

Der NWT4000 kann mit der Software WinNWT4 auch das Stehwellenverhältnis messen. Dazu ist allerdings eine Meßbrücke erforderlich.

Das Stehwellenverhältnis beschreibt bei einer Eintormessung das Verhältnis der hin laufenden Welle zur reflektierten Welle. Wie gut z.B. eine Antenne die hinlaufende Welle (Sendeleistung) abstrahlt und wieviel Leistung auf der Leitung zurück kommt, also nicht abgestrahlt wird.

Dazu wird eine SWV Brücke benötigt, die den gewünschten Frequenzbereich abdeckt.
Eine preiswerte SWV Brücke habe ich bestellt und hier durchgemessen. Diese Brücke ist laut Aufdruck von 0,1 MHz bis 3000 MHz ausgelegt.

Als erstes wurde die Transmission bei einem offenen Abgang gemessen. Das heißt die hinlaufende Leistung wird vollständig reflektiert und am Ausgang gemessen. Das ist dann die Transmissionsdämpfung der Brücke selbst.
Hier das Meßergebnis. Weiterlesen

3dB Dämpfungsglied aufgebaut bis 3,5GHz

Ich habe ein 3dB Dämpfungsglied simuliert und aufgebaut.

Auf einer FR4 Platine 0,8mm dick nimmt die Durchgangsdämpfung mit der Frequenz ganz ordentlich zu. Bei 5cm Platinenlänge sind das ca. 0,2dB pro GHz, Das entspricht bei 3GHz ca. 0,6 dB und bei 10GHz sind das dann 2 dB.
Ein Kondensator in Reihe wird dagegen immer „durchlässiger“ mit steigender Frequenz. Warum das also nicht einmal kombinieren und eine konstantere Dämpfung über eine größere Bandbreite anstreben. Und das alles mit Standard Materialien. Also kein Hochfrequenz Platinen Material von Rogers, keine schwierig zu bekommenden ATC Kondensatoren.

Ersteinmal werden die idealen Widerstandswerte hier berechnet mit 292 und 17,6 Ohm.
292 Ohm wird erreicht durch eine Parallelschaltung von 560 Ohm und 680 Ohm, ergibt 307 Ohm. Für 17,6 Ohm wird einfach ein 18 Ohm Widerstand genommen. Weiterlesen

Die Ausgangsleistung des NWT4000-1 gemessen

Ich habe die Ausgangsleistung meines NWT4000-1 über die Frequenz gemessen.

Der NWT4000-1 wurde mit der WinNWT4 Software angesteuert. Im Reiter VFO kann man direkt die Frequenz angeben.

Der Ausgangs wurde auf ein Oszilloskop Tektronix 2465A mit 50 Ohm Eingang gegeben. Hier sieht man gut die Rechteck Kurvenform die der NWT4000 ausgibt. Weiterlesen

Wilkinson Leistungs Teiler 4-stufig von 1GHz bis über 4,4GHz

Ich habe einen breitbandigen 3dB Wilkinson Leistungs Teiler 4-stufig simuliert, optimiert und dann aufgebaut. Theoretisch soll er von 1GHz bis zu 10GHz funktionieren.

Der Simulations Aufbau im Ansoft Designer:

Die Simulations Ergebnisse im Ansoft Designer:

Rot Transmission S21
1GHz -3.2dB bis zu 10GHz mit -5.2dB
Das liegt an den Verlusten in der FR4 Platine, theoretisch ca. 0,2 dB pro GHz bei 5 cm Platinenlänge FR4 0,8mm dick Weiterlesen